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Abstract—The idea behind this project is to develop an AI for the 
game of checkers that uses its experiences or certain events to 
implement moves in its lifetime. These events are then used to 
influence the future behavior of the program i.e. the program's 
decision about whether a move to be made is a good move or not is 
influenced by both the program's understanding of the rules of the 
game of checkers and by the history of games played. Instead of 
giving the program a static idea of how to play a game of checkers 
we will be making its understanding more fluid in which the code can 
get better or worse at playing the game. 
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1. INTRODUCTION 

Artificial Intelligence approaches can be explained and can be 
experimented using board games because of their complexity 
of game tree space. The performance of various algorithms 
and techniques can be evaluated by these board games. 
Checkers incorporates a stochastic process therefore the game 
tree space is too large to lend itself to the traditional method of 
search. A computer program(Blondie24) that succeeded in 
doing so is a major milestone. The goal of this project was to 
recreate this major milestone using a different algorithm. In 
some cases, reinforcement learning algorithms perform better. 
We will be training the network with help of self-play and 
testing it against humans. The AI will then update the network 
weights using back propagation, thus improving its gameplay. 
We will be combining temporal difference method with back 
propagation for error correction. The truly remarkable aspect 
of this approach is that the computer program is self-taught. 
The weights are randomly initialized (initialized to 0) and then 
temporal difference algorithm is used to train the network.  

2. RELATED WORK 

There has been significant work done in this field which 
includes creation of AI like “Blondie24” and “TD-Gammon”.  

Blondie24: It is an artificial intelligence checkers-playing 
computer program named after the screen name used by a 
team led by David B. Fogel. The purpose was to determine the 
effectiveness of an artificial intelligence checkers-playing 
computer program. Blondie24 played against some 165 human 
opponents and was shown to achieve a rating of 2048, or 
better than 99.61% of the playing population of that web site. 

The design of Blondie24 is based on a minimax algorithm of 
the checkers game tree in which the evaluation function is an 
artificial neural network. The neural net receives as input a 
vector representation of the checkerboard positions and 
returns a single value which is passed on to the minimax 
algorithm. The weights of the neural network were obtained 
by an evolutionary algorithm (an approach now called 
neuroevolution). In this case, a population of Blondie24-like 
programs played each other in checkers, and those were 
eliminated that performed relatively poorly. Performance was 
measured by a points system: Each program earned one point 
for a win, none for a draw, and two points were subtracted for 
a loss. After the poor programs were eliminated, the process 
was repeated with a new population derived from the winners. 
In this way, the result was an evolutionary process that 
selected programs that played better checkers games. The 
significance of the Blondie24 program is that its ability to play 
checkers did not rely on any human expertise of the game. 
Rather, it came solely from the total points earned by each 
player and the evolutionary process itself. The evolving 
players did not even know which individual games ended in a 
win, loss, or draw.  

TD-Gammon is a neural network that trains itself to be an 
evaluation function for the game of backgammon by playing 
against itself and learning from the outcome. Although TD-
Gammon has greatly surpassed all previous computer 
programs in its ability to play backgammon, that was not why 
it was developed. Rather, its purpose was to explore some 
exciting new ideas and approaches to traditional problems in 
the field of reinforcement learning. Each turn while playing a 
game, TD-Gammon examines all possible legal moves and all 
their possible responses (two-ply look-ahead), feeds each 
resulting board position into its evaluation function, and 
chooses the move that leads to the board position that got the 
highest score. In this respect, TD-Gammon is no different than 
almost any other computer board-game program. TD-
Gammon's innovation was in how it learned its evaluation 
function.TD-Gammon's learning algorithm consists of 
updating the weights in its neural net after each turn to reduce 
the difference between its evaluation of previous turns' board 
positions and its evaluation of the present turn's board 
position—hence "temporal-difference learning". TD-Gammon 
was designed as a way to explore the capability of multilayer 
neural networks trained by TD(lambda) to learn complex 
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nonlinear functions. It was also designed to provide a detailed 
comparison of the TD learning approach with the alternative 
approach of supervised training on a corpus of expert-labelled 
exemplars. 

PROPOSED PLAN 

In this project the trained program will act both as evaluator 
and a controller by using board positions to choose that move 
that will lead to the best value. 

 

The architecture of a RL agent 

On the left, the arrows labeled ’state’ and ’reward’ denote the 
two signals that the agent received from the environment. On 
the right, the arrow labeled ’action’ denotes the only signal the 
environment receives from the agent. For each step, the agent 
receives state and reward signals and then produces an action 
signal that changes the environment. The dotted line denotes 
the time horizon of a single step with the new state and reward 
signals after action at has been performed. 

3.  ALGORITHM AND METHODOLOGY 

In designing the inputs to the network we have mapped the 
board position onto an input vector of 91 elements. 

A checkers board consists of 64 blocks and 32 positions for 
placing checkers. The board is decomposed into smaller sub-
boards of size   8 x 8, 7 x7, 6 x 6,…, 3x3. This comprises of 
total 91 inputs and 1 input is given for piece difference. These 
92 input units are fully connected to a hidden layer of 40 units, 
and this hidden layer is in turn connected to the single output 
neuron. Each hidden layer neuron, and the output layer 
neuron, also has bias inputs whose values are held at unity.  

The network was trained using a version of TD-
backpropagation. Weight changes were calculated following 
every move except the first, and the changed weights were 
used in the next move's evaluation. The desired output during 
backpropagation was set to the evaluation of the neural 
network at the following move (after the opponent had made a 
move, that is.) The procedure at each step was: 

Given vector of weights D eligibility trace vector e(s). 

1.) Evaluate board positions using the neural 
network. Choose the move with the highest 
(lowest as black) evaluation. Move. 

2.) If this is the end of the game: 
Backpropagate , with reward of 1 or 0 depending 

on whether white won or lost. 
3.) Else if this was not the first move, then: 
a) Evaluate board. 
b) Calculate error between current evaluation 

and previous evaluation. 
c) Backpropagate, using the current evaluation 

as desired output and the board position 
previous to the current move as the input. 

End. 
 
Backpropagation procedure: 
Given an input vector V and a desired output O. 
1) Calculate error E between the network's 

output on V and the desired output O. 
2) e(s) = (lambda)*e(s) + grad(V) 
3) V = V + (alpha)*error(n)*e(s) 
where error(n) is: 
For the weight between hidden node i and the 

output node, 
error(i)=E*activation(i)*weight(i) 
For the weight between input node j 

and hidden node i, 
error(j,i)=error(i)*activation(j)*weight(j,i) 

4. RESULTS 

The AI was trained by making it play 20,000 games against 
beginner level opponents. The evolved neural network had the 
ability to defeat players rated 1200 and lower, and had almost 
as many losses as wins against opponents rated between 1200 
and 1300. With successive Iterations the neural network will 
give better results and can defeat further higher ranked 
players. The final rating of the AI is 1202, and there’s still 
possibility of an increase in the ratings as it faces further 
opponents. 

The largest increase in rating occurs when a weak player 
defeats a strong player, while the largest decrease in rating 
occurs when a strong player loses to a weak player. 

The best performance of the evolved network was likely 
recorded in a game against a player rated 1274. 

5. CONCLUSION 

As a result of successive gameplays, the ability of the AI can 
be seen. The AI was given no pre-programmed knowledge 
(except the possibility for using piece differential) and it 
learned to play at level that is challenging many humans after 
the training phase. Moreover, the coordinated action of even 
two pieces moving to pin down a single piece can necessitate a 
long sequence of moves where it is difficult to ascribe 
advantage to one position over another until the final result is 
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in view. Finally, it is well known that many end game 
sequences in checkers can require very high ply, and all of 
these cases were simply unavailable to the neural network to 
assess. Still it played above expected level during the end 
games after it was completely trained. 
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