
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016, pp. 213-215
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

AI for Checkers using Artificial Neural Networks
Darshan Patel1, Shashank Rao2 and Aayush Kubitikar3

1,2,3Department of Information Technology, Sardar Patel Institute of Technology

Abstract—The idea behind this project is to develop an AI for the
game of checkers that uses its experiences or certain events to
implement moves in its lifetime. These events are then used to
influence the future behavior of the program i.e. the program's
decision about whether a move to be made is a good move or not is
influenced by both the program's understanding of the rules of the
game of checkers and by the history of games played. Instead of
giving the program a static idea of how to play a game of checkers
we will be making its understanding more fluid in which the code can
get better or worse at playing the game.

Keywords: Board Games, Reinforcement Learning, TD (λ), Self-
play

1. INTRODUCTION

Artificial Intelligence approaches can be explained and can be
experimented using board games because of their complexity
of game tree space. The performance of various algorithms
and techniques can be evaluated by these board games.
Checkers incorporates a stochastic process therefore the game
tree space is too large to lend itself to the traditional method of
search. A computer program(Blondie24) that succeeded in
doing so is a major milestone. The goal of this project was to
recreate this major milestone using a different algorithm. In
some cases, reinforcement learning algorithms perform better.
We will be training the network with help of self-play and
testing it against humans. The AI will then update the network
weights using back propagation, thus improving its gameplay.
We will be combining temporal difference method with back
propagation for error correction. The truly remarkable aspect
of this approach is that the computer program is self-taught.
The weights are randomly initialized (initialized to 0) and then
temporal difference algorithm is used to train the network.

2. RELATED WORK

There has been significant work done in this field which
includes creation of AI like “Blondie24” and “TD-Gammon”.

Blondie24: It is an artificial intelligence checkers-playing
computer program named after the screen name used by a
team led by David B. Fogel. The purpose was to determine the
effectiveness of an artificial intelligence checkers-playing
computer program. Blondie24 played against some 165 human
opponents and was shown to achieve a rating of 2048, or
better than 99.61% of the playing population of that web site.

The design of Blondie24 is based on a minimax algorithm of
the checkers game tree in which the evaluation function is an
artificial neural network. The neural net receives as input a
vector representation of the checkerboard positions and
returns a single value which is passed on to the minimax
algorithm. The weights of the neural network were obtained
by an evolutionary algorithm (an approach now called
neuroevolution). In this case, a population of Blondie24-like
programs played each other in checkers, and those were
eliminated that performed relatively poorly. Performance was
measured by a points system: Each program earned one point
for a win, none for a draw, and two points were subtracted for
a loss. After the poor programs were eliminated, the process
was repeated with a new population derived from the winners.
In this way, the result was an evolutionary process that
selected programs that played better checkers games. The
significance of the Blondie24 program is that its ability to play
checkers did not rely on any human expertise of the game.
Rather, it came solely from the total points earned by each
player and the evolutionary process itself. The evolving
players did not even know which individual games ended in a
win, loss, or draw.

TD-Gammon is a neural network that trains itself to be an
evaluation function for the game of backgammon by playing
against itself and learning from the outcome. Although TD-
Gammon has greatly surpassed all previous computer
programs in its ability to play backgammon, that was not why
it was developed. Rather, its purpose was to explore some
exciting new ideas and approaches to traditional problems in
the field of reinforcement learning. Each turn while playing a
game, TD-Gammon examines all possible legal moves and all
their possible responses (two-ply look-ahead), feeds each
resulting board position into its evaluation function, and
chooses the move that leads to the board position that got the
highest score. In this respect, TD-Gammon is no different than
almost any other computer board-game program. TD-
Gammon's innovation was in how it learned its evaluation
function.TD-Gammon's learning algorithm consists of
updating the weights in its neural net after each turn to reduce
the difference between its evaluation of previous turns' board
positions and its evaluation of the present turn's board
position—hence "temporal-difference learning". TD-Gammon
was designed as a way to explore the capability of multilayer
neural networks trained by TD(lambda) to learn complex

Darshan Patel, Shashank Rao and Aayush Kubitikar

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

214

nonlinear functions. It was also designed to provide a detailed
comparison of the TD learning approach with the alternative
approach of supervised training on a corpus of expert-labelled
exemplars.

PROPOSED PLAN

In this project the trained program will act both as evaluator
and a controller by using board positions to choose that move
that will lead to the best value.

The architecture of a RL agent

On the left, the arrows labeled ’state’ and ’reward’ denote the
two signals that the agent received from the environment. On
the right, the arrow labeled ’action’ denotes the only signal the
environment receives from the agent. For each step, the agent
receives state and reward signals and then produces an action
signal that changes the environment. The dotted line denotes
the time horizon of a single step with the new state and reward
signals after action at has been performed.

3. ALGORITHM AND METHODOLOGY

In designing the inputs to the network we have mapped the
board position onto an input vector of 91 elements.

A checkers board consists of 64 blocks and 32 positions for
placing checkers. The board is decomposed into smaller sub-
boards of size 8 x 8, 7 x7, 6 x 6,…, 3x3. This comprises of
total 91 inputs and 1 input is given for piece difference. These
92 input units are fully connected to a hidden layer of 40 units,
and this hidden layer is in turn connected to the single output
neuron. Each hidden layer neuron, and the output layer
neuron, also has bias inputs whose values are held at unity.

The network was trained using a version of TD-
backpropagation. Weight changes were calculated following
every move except the first, and the changed weights were
used in the next move's evaluation. The desired output during
backpropagation was set to the evaluation of the neural
network at the following move (after the opponent had made a
move, that is.) The procedure at each step was:

Given vector of weights D eligibility trace vector e(s).

1.) Evaluate board positions using the neural
network. Choose the move with the highest
(lowest as black) evaluation. Move.

2.) If this is the end of the game:
Backpropagate , with reward of 1 or 0 depending

on whether white won or lost.
3.) Else if this was not the first move, then:
a) Evaluate board.
b) Calculate error between current evaluation

and previous evaluation.
c) Backpropagate, using the current evaluation

as desired output and the board position
previous to the current move as the input.

End.

Backpropagation procedure:
Given an input vector V and a desired output O.
1) Calculate error E between the network's

output on V and the desired output O.
2) e(s) = (lambda)*e(s) + grad(V)
3) V = V + (alpha)*error(n)*e(s)
where error(n) is:
For the weight between hidden node i and the

output node,
error(i)=E*activation(i)*weight(i)
For the weight between input node j

and hidden node i,
error(j,i)=error(i)*activation(j)*weight(j,i)

4. RESULTS

The AI was trained by making it play 20,000 games against
beginner level opponents. The evolved neural network had the
ability to defeat players rated 1200 and lower, and had almost
as many losses as wins against opponents rated between 1200
and 1300. With successive Iterations the neural network will
give better results and can defeat further higher ranked
players. The final rating of the AI is 1202, and there’s still
possibility of an increase in the ratings as it faces further
opponents.

The largest increase in rating occurs when a weak player
defeats a strong player, while the largest decrease in rating
occurs when a strong player loses to a weak player.

The best performance of the evolved network was likely
recorded in a game against a player rated 1274.

5. CONCLUSION

As a result of successive gameplays, the ability of the AI can
be seen. The AI was given no pre-programmed knowledge
(except the possibility for using piece differential) and it
learned to play at level that is challenging many humans after
the training phase. Moreover, the coordinated action of even
two pieces moving to pin down a single piece can necessitate a
long sequence of moves where it is difficult to ascribe
advantage to one position over another until the final result is

AI for Checkers using Artificial Neural Networks 215

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

in view. Finally, it is well known that many end game
sequences in checkers can require very high ply, and all of
these cases were simply unavailable to the neural network to
assess. Still it played above expected level during the end
games after it was completely trained.

REFERENCES

[1] “Some Studies in Machine Learning using the game of
Checkers”, A. Samuel, IBM Journal, Vol 3, No. 3, July 1959.

[2] Samuel’s Checkers Illustration is reprinted from “Reinforcement
Learning: An Introduction’”, R. Sutton and A. Barto, MIT Press,
available at:
http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node109.html

[3] “Temporal Difference Learning and TD-Gammon”, G. Tesauro,
Communications of the ACM, Vol. 38, No. 3, March 1995.

[4] “Reinforcement Learning: An Introduction”, A. Barto. MIT Press,
1998. Available online at:
http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

[5] “Evolving Neural Networks to Play Checkers without Relying on
Expert Knowledge”, K. Chellapilla and D. Fogel, IEEE
Transactions on Neural Networks, Vol. 10, No. 6, 1999.

[6] “Blondie24: Playing at the Edge of AI”, Fogel DB, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 2002

[7] "A Self-Learning Evolutionary Chess Program," Fogel DB, Hays
TJ, Hahn SL, and Quon J, Proceedings of the IEEE, Vol.92 (12),
pp. 1947-1954.

[8] “The Hex Player Project: An Experiment in Self Directed
Machine Learning”, J. Zurita, MSCS Thesis, Villanova
University, 2012.

[10] “Reinforcement learning in board games”, I. Ghory, CSTR-04-
004, Department of Computer Science, University of Bristol,
2004. Available at:
http://www.cs.bris.ac.uk/Publications/Papers/2000100.pdf

